Ascl1 (Mash1) Knockout Perturbs Differentiation of Nonneuronal Cells in Olfactory Epithelium

نویسندگان

  • Richard C. Krolewski
  • Adam Packard
  • Woochan Jang
  • Hendrik Wildner
  • James E. Schwob
چکیده

The embryonic olfactory epithelium (OE) generates only a very few olfactory sensory neurons when the basic helix-loop-helix transcription factor, ASCL1 (previously known as MASH1) is eliminated by gene mutation. We have closely examined the structure and composition of the OE of knockout mice and found that the absence of neurons dramatically affects the differentiation of multiple other epithelial cell types as well. The most prominent effect is observed within the two known populations of stem and progenitor cells of the epithelium. The emergence of horizontal basal cells, a multipotent progenitor population in the adult epithelium, is anomalous in the Ascl1 knockout mice. The differentiation of globose basal cells, another multipotent progenitor population in the adult OE, is also aberrant. All of the persisting globose basal cells are marked by SOX2 expression, suggesting a prominent role for SOX2 in progenitors upstream of Ascl1. However, NOTCH1-expressing basal cells are absent from the knockout; since NOTCH1 signaling normally acts to suppress Ascl1 via HES1 and drives sustentacular (Sus) cell differentiation during adult epithelial regeneration, its absence suggests reciprocity between neurogenesis and the differentiation of Sus cells. Indeed, the Sus cells of the mutant mice express a markedly lower level of HES1, strengthening that notion of reciprocity. Duct/gland development appears normal. Finally, the expression of cKIT by basal cells is also undetectable, except in those small patches where neurogenesis escapes the effects of Ascl1 knockout and neurons are born. Thus, persistent neurogenic failure distorts the differentiation of multiple other cell types in the olfactory epithelium.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mash1 activates a cascade of bHLH regulators in olfactory neuron progenitors.

The lineage of olfactory neurons has been relatively well characterized at the cellular level, but the genes that regulate the proliferation and differentiation of their progenitors are currently unknown. In this study, we report the isolation of a novel murine gene, Math4C/neurogenin1, which is distantly related to the Drosophila proneural gene atonal. We show that Math4C/neurogenin1 and the b...

متن کامل

Dynamics of MASH1 expression in vitro and in vivo suggest a non-stem cell site of MASH1 action in the olfactory receptor neuron lineage.

Disruption of the mouse gene encoding the transcription factor MASH1 leads to loss of certain classes of neurons, including receptor neurons of the olfactory epithelium (OE). Here we investigate the nature of the cell type expressing MASH1 in mouse OE by manipulating olfactory receptor neuron (ORN) neurogenesis in vitro and in vivo to alter the dynamics of neuronal production. The results indic...

متن کامل

Ascl1 (Mash1) Defines Cells with Long-Term Neurogenic Potential in Subgranular and Subventricular Zones in Adult Mouse Brain

Ascl1 (Mash1) is a bHLH transcription factor essential for neural differentiation during embryogenesis but its role in adult neurogenesis is less clear. Here we show that in the adult brain Ascl1 is dynamically expressed during neurogenesis in the dentate gyrus subgranular zone (SGZ) and more rostral subventricular zone (SVZ). Specifically, we find Ascl1 levels low in SGZ Type-1 cells and SVZ B...

متن کامل

The cellular function of MASH1 in autonomic neurogenesis

Using primary cultures and immortalized multipotential stem cell lines derived from wild-type and Mash1 mutant neural crest cells, we have analyzed the cellular function of MASH1 in autonomic neurogenesis. We present evidence for the existence of a precursor expressing MASH1 and neuronal markers such as neurofilament, neuron-specific tubulin, and tetanus toxin receptor. This cell has a nonneuro...

متن کامل

Mash1 regulates neurogenesis in the ventral telencephalon.

Previous studies have shown that mice mutant for the gene Mash1 display severe neuronal losses in the olfactory epithelium and ganglia of the autonomic nervous system, demonstrating a role for Mash1 in development of neuronal lineages in the peripheral nervous system. Here, we have begun to analyse Mash1 function in the central nervous system, focusing our studies on the ventral telencephalon w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012